
W- A145 839 PROGRAMMING EFFORT EST[MATIONWU PURDUE RESEARCH
FOUNDATIOR LAFAYETTE IN SCONTEET AL 14AUG84

JNCLASSIFIEDO 189.-LDA28-K07 F/U 9/2 NL

%

IIIIJ = _2.2I IIH- -1

136

1 .25 1, 1 '.4 11111.6

Vc~c ';S.Y.'O% 'EST C~AP

t[(NCLAR I l F D

SECURITY CLASSIFICATION OF THIS PAGE ("en Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT°S CATALOG NUMBER

ARO 18691.1-EL N/A N/A
Mv) 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVEF.VL

Go 15 Feb 82 -14 Aug 84
Programming Effort Estimation Final Report

Ln 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) 1. CONTRACT OR GRANT NUMRER(.)

S. D. Conte, H. E. Dunsmore, V. Y. Shen DAAG29-82-K-0071

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

Purdue Research Foundation
Purdue University

II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office

Post Office Box 12211 13. NUMBER OF PAGES
Re'nn rch Triinnl r P~,rl, Nr 977O9 8

r14. MONITORING AGENCY 'I14AME a ADCRES(-iflferent from Controlling Office) 15. SECURITY CLASS. (of ihie report)

Unclassified

ISa. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

10. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. Iva

I7. DISTRIBUTION STATEMENT (of the ebeirect entered In Block 20, it different from Report)

~ NA

I. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are
Lthose of the author(s) and should not be construed as an official

Department of the Army position, policy, or decision, unless so
It Q1.n1t~ d by otht'r dfPnl- t'nn
I. KEY WORDS (Continue on reveree side if necesary and Identify by block number)

Computer Programming
Models
Project Management

24. AFIFACr cmtu em rww eft neepeemy n identity by block number)

In this research project we proposed to "investigate various models of program-
ming effort estimation and prediction at various stages of the software development
process". The project has led to several results and models. This report concentrates
on results from the last year of our study (August, 1983 - August, 1984).

84 9 21 111
o JA s ja1 7 UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE (When Does Entered)

FINAL REPORT

(TWL;NTY-FIVE COPIES REQUIRED)

1. ARO PROPOSAL NUMBER: 18691-A-EL16" :T &a -~a 1, 1
2. PERIO D COVERED BY REPORT: T_.., 1, Jamme r 1, 41994

3. TITLE: PROGRAMMING EFFORT ESTIMA i'ION

4. CONTRACT OR GRANT NUMBER: DAAG29-82-K-0071

5. NAME OF INSTITUTION: Purdue Research Foundation, Purdue University

6. AU 'THOR(S) OF REPORT: S. D. Conte, Ii. E. Dunsmore, and V. Y. Shen

7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO
SPONSORSHIP DURING THIS PERIOD, INCLUDING JOURNAL REFER-
ENCES:

Conte, S. D., If. E. Dunsmore and V. Y. Shen. Software effort estimation and
productivity. To appear in Advances in Computers Vol. 24 (M. Yovits, ed.),
Academic Press, NY (1984).

Dimsmore, It. E. Software metrics: an overview of an evolving methodology.
Information Processing and Management Vol. 20, No. 1-2 (1984), 183-192.

Dunsmore, I. E., V. Y. Shen and S. D. Conte. A comparison of a few effort
estimation models. Journal of Parametrics Vol. 4, No. 1 (1984), 4-14.

Shen, V. Y., T. J. Yu, S. M. Thebaut and L. R. Paulsen. Identifying error-prone
software: an empirical study. Submitted to IEEE Transactions on Software
Engineering (May, 1984).

Thebaut, S. M. and V. Y. Shen. An analytic resource model for large-scale
software development. Information Processing and Management Vol. 20, No. 1-2
(1984), 295-315.

Volpano, D. M., and H. E. Dunsmore. Empirical Investigation of COBOL
Features. Information Processing and Management Vol. 20, No. 1-2 (1984), 277-
291.

Wang, A. S. and H. E. Dunsmore, Back-to-front programming effort prediction.
Information Processing and Management Vol. 20, No. 1-2 (1984), 139-149.

Wang, A. S. The cstimation of software size and effort. an approach based on
the evolution of software metrics. Ph.D. Thesis, Department of Computer Sci-
ence, Purdue Uni; .rsity (August 1984).

Yu, T. 1. Software metrics data collection. C.SD-TR-4?l, Department of Corn-
puter Science, Puidue University, West Lafayette, IN (November 1982, revised
1984).

8. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT:
Principal Investigators: S.D. Conte, H.E. Dunsmore, V.Y. Shen
Research Assistan~s: B.A. Nejmeh, S.M. Thebaut, A.S. Wang, Ti. Yu

NTIS GRA&I
DTIC

TAB3UnalIoaced F1
Just if'icatio

By
Distribut ion/

Availability Codes

Dist Special

ailK;

-3-

BRIEF OUTLINE OF RESEARCH FINDINGS

Introduction

In this research project we proposed to "investigatsvarious models of program-
ming effort estimation and prediction at various stages &f the software development
process-. The project has led to several results and models. This report concentrates
on results from the last year of our study (August, 1983 - August, 1984).

Large-Scale Software Development Models
Large-scale software development models are models that explain the effort in

constructing software products involving a team of programmers. Each such model
generally has as parameters the following: -

S - size in thousands of lines of code
E development effort in programmer-months
D - development duration in months.
We have investigated a number of large scale software development models. In

this document we report on three of the best known: the Doty model [Herd 77],
Putnam's software equation [Putnam 78] (the basis for the SLIM model), and
Boehm's COCOMO model [Boehm 811.

The Doty model has a simple form for large-size projects:

E = 5.288xS
1-&

7

Putnam's software equation can be written as

E =kx__
D

4

where k is a 'technology' constant. Boehm's COCOMO (COnstructive COst MOdel)
can have many input parameters in its "Intermediate" form

E = al Sb' m(X)

in which a, and bi change with three development modes and m(X) is the product of
fifteen cost driver attributes.

During the course of this research we have developed at Purdue University the
COPMO (COoperative Programming MOdel) [Thebaut 83, 84]:

in which E,(S) is the contribution to total effort from programming a project of size
S and E, (P) is that portion of total effort required by the necessary coordination of
the individual efforts of a programming team with average team size P.

-4

In evaluating models we use the metrics.
MRE - the mean magnitude of relative error, i.e., the mean percentage of error
between a model's predicted effort and the actual recorded effort,

and
PRED(25) - the percentage of predicted effort values that fall within 25% of the
actual recorded effort values.

Using a database we have gathered of 189 industry, military, and university pro-
jects, we examined the performance of each of the models. The results appear in
Table I below.

Table 1.

M, PRED (.25)

Doty 1.85 21%
Putnam 1.16 6%

COCOMO .79 38%
COPMO .41 45%

Note that the performance of the COCOMO model is somewhat better than that of
the Doty and Putnam models (both of which are clearly unacceptable). Furthermore,
note that COPMO is somewhat better still than COCOMO in terms of both mean
magnitude of relative error aad percentage of estimates that fall within 25% (an
acceptable range) of their actual effort values.

In order to make the COPMO an even better predictor of programming effort,
e recognized that a single model may not be acceptable for wide ranges of program-

ming productivity. This led to the Generalized COPMO

E = b i S + ci FP-5

in which bi and c are allowed to vary depending upon the productivity of the pro-
grammers involved. For the 189 projects for which we have data this led us to the
ten classes and bi and ci values shown in Table 2.

-5-

Table 2.

LOC /MM bi ,

0-85 4.7 3.6
86-200 3.0 2.0
201-300 2.4 1.5
301-400 2.2 1.2
401-500 1.8 1.0
501-600 1.6 0.9
601-700 1.2 0.8
701-800 1.1 0.7
901-1000 0.9 0.5
1001- 0.8 0.4

Note that in Table 2 LOC/MM refers to lines of code per programmer month.

This Generalized COPMO leads to a new entry in Table I as shown in Table 3.

Table 3.

MRE PRED (.25)

Doty 1.85 21%
Putnam 1.16 6%

COCOMO . 38%
COPMO .41 45%

Generalized COPMO .21 75%

Note that the Generalized COPMO outperforms all other models (including the
COPMO from which it was derived). This performance of .21 mean magnitude of
relative error and 75% acceptable estimates seems to us a step toward a useful effort
estimator. On the other hand, note that the information used to obtain the produc-
tivity figures were obtained from the project data. It remains for us to show that the
estimates will be as good when a, and b, are derived from historical data alone.

Early Size and Effort Estimation
In our continuing research on software development models research we have

seen th.,t most models employ size as one of the most important parameters, i.e.,

E = f (SIZE, others).

Thus, for most models accurate effort estimation relies on accurate size estimation
and errors in ,ze estimation will lead to errors (often significant ones) in effort esti-
mation.

-6-

Our work in early size and effort estimation has proceedeo froin the basic idea
that we should be able to observe (and measure) some metric early in the software
development process that will lead to acceptable final size and total effort estimates.
Furthermore, if this process is repeated at various stages during the software
development process, we should be able to refine these estimates toward greater
accuracy as software development proceeds.

Ir our most recent (and most successful) in this area we employed the following
ideas and hypotheses [Wang 841:
(1) In our experimental work our subjects used an "incremental" strategy of produc-

ing the program routine-by-routine (along with data structures for the next
lower level as discussed below). In this strategy, each subprogram was tested
before proceeding to the next. We hypothesized (and found it to be supported
by our data) that LOC (the number of lines of code in the program) evolves
linearly under such a strategy. T, at is, the "curve" showing lines of code in
place in the program increases at an approximately constant rate throughout
program development.

(2) We hypothesized that VARS (the number of variables used in a program) is a
size-related metric. In our experimental work a "top-down data-structure-first"
development strategy was used in which subjects introduced the main software
routine and the data items for the next level in a recursive manner. During the
soltware development process VARS evolved in a concave-down manner (as we
had assumed). That is, a curve showing variables in place in the program
increases very rapidly from zero and later flattens out as few variables are added
in the latter stages of software development.

(3) These evolutionary metric curves form useful "finger prints" of the development
process that can be used by the programmer and manager (in our case experi-
menter) alike.
In our empirical investigation we employed forty-four Computer Science gradu-

ate students at Purdue University in the summer of 1983. Each was to construct two
approximately 400-line Pascal programs. Each subject was allowed a two to three
week development time (25 to 35 hours programming time) for each program.

Our hypotheses concerning curve forms for LOC and VARS were supported and
we arrived empirically at the following functional forms for modelling the evolution
of LOC and VARS:

LOC(t)=a x t 12

Note that the 1.2 exponent is very close to linear (i.e., 1.0) while reflecting a slight
period of inactivity at the beginning of each software development process.

VARS(t) = a X t 2

Note that the exponent .2 suggests a very concave-down curve.
Our early size estimation results appear in Table 4.

-7

Table 4.

Program Estimate MRE PRED (.25)

I LOCvAs .22 68%

LOCPGMR .23 57%

2 LOCVAAs .24 61%

LOCpGM .42 52%

LOCPGMR is the size estimate based on an early interview of each programmer on

each project. LOCVARS is an early size estimate obtained at the same early interview
time by observing the evolution and current status of the metric VARS, Note that
size estimates based on VARS outperform the subjects' own subjective size estimates
for both programs.

Our early effort estimation results appear in Table 5.

Table 5.

Program Es.*imate MRE PRED (.25)

I E vARS .24 64%

EpGMR .42 57%

2 EvARS .28 52%

EpGMR .86 9%

EPGMR is the programmer's own effort estimate obtained in the early interview of

each programmer on each project. EvAs is the effort estimate obtained at the same
early interview time by observing the evolution and current status of the metric
VARS. Note that effort estimates based on VARS outperform (quite a bit) the sub-
jects' own subjective effort estimates for both programs.

We consider that this research has shown the possibility of using our evolution
model of the interaction between data structures and size as a tool for early determi-
nation of the final size and total effort of the software development process. More
studies toward confirmation must be performed.

-8.

Software Defects

In the experiment involving the forty-four subjects at Purdue University in the
summer of 1983 we considered that programming ended when programs ran correctly
on some standard acceptance test cases. During testing subjects ran their programs
against some additional standard test cases and made necessary alterations. We
investigated several parameters including "time spent in programming" and the
"exhaustiveness of the acceptance test cases", but we found no relationship other
than our simplest hypothesis - the correlation between testing time and defects
discovered during testing was a significant .47.

In an industrial study involving the analysis of 1428 program modules written in
Pascal, PL/1, and Assembly language, we investigated the factors affecting CUD, the
count of distinct module defects [Shen 84]. We found that 12, the number of unique
opcrands in a program, and DE, the total number of decisions (i.e., Boolean expres-
sions) in a program were the best estimators of CMD. Note that 'q2 is very strongly
related to VARS that proved so successful in the size and effort estimation study
reported above.

Supporting Analyzers and Software Metrics Data Collection
In order to conduct our software metrics work we have produced software

analyzers - counters that compute basic metrics for programs written in the
languages Fortran, Cobol, Pascal, and C. More than fifty of these have been distri-
buted to interested groups in the military, industry, and universities.

Our Software Metrics Data Collection is a large, comprehensive set of data
representing nineteen different program development histories from military, indus-
try, and university projects.

Future Research
(1) We intend to continue our work on the Generalized COoperative Programming

Model. We are looking for an early way of determining the complexity classes.

(2) Our early size and effort estimation work will continue. We need to

(a) refine our models,

(b) obtain "real world" verification by the use of non-university project data,

(c) continue to investigate development strategies for better estimation and
control, and

(d) refine the use of evolution curves as "finger prints" of the software develop-
ment process.

(3) We want to investigate further the area of software defects. Immediately we
see a need to

(a) refine the definition of 'defects',

(b) determine the best predictors of defects,

(c) determine the relationship(s) among effort, complexity, and defects,

(d) determine how best to split time into development and testing phases, and

(e) investigate program design languages and techniques that "avoid" defects.

.9-

Refer': :*s

[Bochm 81] Boehm, B. W. Software Engineering Economics. Prentice-Hall, Engle-
wood Cliffs, NJ (1981).

[hlerd 77] Herd, J. R., Postak, J. N., Russell, W. E., and Stewart, K. R. Software
cost estimation study - study results. Final Technical Repot, RADC-TR.77-220,
Doty Associates, Inc., Rockville, MD (June 1977).

[Putnam 78] Putnam, L. H. A general empirical solution to the macro software siz-
ing and estimating problem. IEEE Transactions on Software Engineering 4, 4
(July 1978), 345-361.

[Shen 84] Shen, V. Y., T. J. Yu, S. M. Thebaut and L. R. Paulsen. Identifying
error-prone software: an empirical study. Submitted to IEEE Transactions on
Software Engineering (May, 1984).

[Thebaut 83] Thebaut, S. M. The Saturation Effect in Large-scale Software Develop.
ment: Its Impact and Control. Ph. D. Thesis, Department of Computer Science,
Purdue University (May 1983).

[Thebaut 84] Thebaut, S. M. and Shen, V. Y. An analytic resource model for large-
scale software development. Information Proces:.ing and Management 20, 1-2
(1984), 295-315.

[Wang 841 Wang, A. S. The Estimation of Software Si:e and Effort: An Approach
Based on the Evolution of Software Metrics. Ph. D. Thesis, Department of Com-
puter Science, Purdue University (August 1984).

